Advertisements
Advertisements
Question
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
Solution
x = 2cos4(t + 3), y = 3sin4(t + 3)
∴ `cos^4(t + 3) = x/(2), sin^4(t + 3) = y/(3)`
∴ `cos^2(t + 3) = sqrt((x)/(2)), sin^2(t + 3) = sqrt((y)/(3)`
∵ cos2(t + 3) + sin2(t + 3) = 1
∴ `sqrt((x)/(2)) + sqrt((y)/(3)` = 1
Differentiating x and y w.r.t. t, we get
`(1)/sqrt(2)"d"/"dx"(sqrt(x)) + (1)/sqrt(3)"d"/"dx"(sqrt(y))` = 0
∴ `(1)/sqrt(2) xx (1)/(2sqrt(x)) + (1)/sqrt(3) xx (1)/(2sqrt(y))."dy"/"dx"` = 0
∴ `(1)/(2sqrt(3).sqrt(y))."dy"/"dx" = -(1)/(2sqrt(2).sqrt(x)`
∴ `"dy"/"dx" = -(sqrt(3).sqrt(y))/(sqrt(2).sqrt(x)`
= `-sqrt((3y)/(2x)`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Find the nth derivative of the following : log (2x + 3)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
If xy = yx, then find `dy/dx`