English

If xy = yx, then find dydx - Mathematics

Advertisements
Advertisements

Question

If xy = yx, then find `dy/dx`

Sum

Solution

xy = yx

y log x = x log y

By differentiating on both sides,

`y * 1/x + log x dy/dx = x * 1/y dy/dx + log y`

`dy/dx(logx - x/y) = log y - y/x`

`dy/dx = (log y - y/x)/(log x - x/y)`

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (April) Specimen Paper

RELATED QUESTIONS

Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `dy/dx` if y = x+ 5x


Find `"dy"/"dx"` if y = xx + 5x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


Evaluate:

`int log x dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×