English

If log5 yy(x4+y4x4-y4) = 2, show that dydydydx=12x313y2 - Mathematics and Statistics

Advertisements
Advertisements

Question

If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`

Sum

Solution

log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2

log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2 `"log"_5^5`     (∴ `"log"_5^5` = 1 )

∴ log5 `((x^4 + "y"^4)/(x^4 - "y"^4)) = "log"_5^(5^2)`

∴ `(x^4 + "y"^4)/(x^4 -"y"^4)` = 5         (∴ log a = log b ⇒ a = b)

∴ x4 +y4 = 25(x4 - y4)

∴ x4 + y4 = 25x4 – 25y4

∴ y4 + 25y4 = 25x4 - x4

∴ 26y4 = 24x4 

Differentiating w. r. t. x, we get

∴ `26xx4y^3("dy")/("d"x) = 24xx4x^3`

∴ `("dy")/("d"x) = (24xx4x^3)/(26xx4"y"^3)`

∴ `("dy")/("d"x) = (12x^3)/(13"y"^3)`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - Short Answers II

RELATED QUESTIONS

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


Find `"dy"/"dx"` if y = xx + 5x


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Find the nth derivative of the following : log (2x + 3)


If f(x) = logx (log x) then f'(e) is ______


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


Derivative of loge2 (logx) with respect to x is _______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Derivative of `log_6`x with respect 6x to is ______


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×