English

If ey = yx, then show that dydxdydx=(logy)2logy-1. - Mathematics and Statistics

Advertisements
Advertisements

Question

If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.

Sum

Solution

ey = y
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y            ...[∵ log e = 1]  ...(1)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = x"d"/"dx"(logy) + (logy)."d"/"dx"(x)`

∴ `"dy"/"dx" = x xx (1)/y."dy"/"dx" + (logy) xx 1`

∴ `"dy"/"dx" = x/y"dy"/"dx" + log y`

∴ `(1 - x/y)"dy"/"dx"` = log y

∴ `((y - x)/(y))"dy"/"dx"` = log y

∴ `"dy"/"dx" = (ylogy)/(y - x)`

= `(ylogy)/(y - (y/logy)`               ...[By (1)]

∴ `"dy"/"dx" = (logy)^2/(log y - 1)`.
Alternative Method :
ey = yx
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y           ...[∵ log e = 1]
∴ x = `y/logy`
Differentiating both sides w.r.t. x, we get
`"dx"/"dy" = "d"/"dy"(y/logy)`

= `((logy)."d"/"dy"(y) - y."d"/"dy"(logy))/(logy)^2`

= `((logy) xx 1 - y xx (1)/y)/(logy)^2`

= `(logy - 1)/(logy)^2`

∴ `"dy"/"dx" = (1)/((dx/dy)) = (logy)^2/(logy - 1)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Differentiate 3x w.r.t. logx3.


Find the nth derivative of the following : log (2x + 3)


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`2^(cos^(2_x)`


`8^x/x^8`


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `9^(log_3x)`, find `dy/dx`.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×