Advertisements
Advertisements
Question
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
Solution
y = 5x. x5. xx. 55
Taking log on both sides, we get
log y = log(5x. x5. xx. 55)
= log 5x + log x5 + log xx + log 55
∴ log y = xlog 5 + 5 log x + xlog x + 5log 5
Differentiating w.r.t. x, we get
`"d"/("d"x)(log y) = "d"/("d"x)(x log 5 + 5 log x + x log x + 5 log 5)`
∴ `1/y*("d"y)/("d"x) = log5*"d"/("d"x)(x) + 5*"d"/("d"x)(log x) + x*"d"/("d"x)(log x) + logx* "d"/("d"x)(x) + "d"/("d"x)(5log5)`
= `log5*1 + 5*1/x + x*1/x + logx*1 + 0`
∴ `("d"y)/("d"x) = y(log5 + 5/x + 1 + logx)`
∴ `("d"y)/("d"x) = 5^x* x^5* x^x* 5^5 (log5 + 5/x + 1 + logx)`
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the second order derivatives of the following : x3.logx
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
Derivative of `log_6`x with respect 6x to is ______
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Find `dy/dx`, if y = (log x)x.