Advertisements
Advertisements
Question
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
Solution
y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
= `log[sqrt((2sin^2 ((3x)/4))/(2cos^2 ((3x)/4)))]`
= `log[sqrt(tan^2((3x)/4))]`
= `log[tan((3x)/4)]`
Differentiating w. r. t. x, we get
`("d"y)/("d"x) = "d"/("d"x)[log(tan((3x)/4))]`
= `1/(tan((3x)/4))* "d"/"d"x[tan((3x)/4)]`
= `cot((3x)/4)*sec^2((3x)/4)*"d"/("d"x)((3x)/4)`
= `cos((3x)/4)/(sin((3x)/4))*1/(cos^2((3x)/4))*3/4`
= `3/(2[2sin((3x)/4)cos((3x)/4)]`
= `3/(2sin((3x)/2))`
= `3/2"cosec"((3x)/2)`
APPEARS IN
RELATED QUESTIONS
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Evaluate
`int 1/(16 - 9x^2) dx`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
Find the second order derivatives of the following : x3.logx
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
Find the nth derivative of the following : log (2x + 3)
If f(x) = logx (log x) then f'(e) is ______
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`