English

Differentiate the following function with respect to x: (log x)x+x(logx) - Mathematics

Advertisements
Advertisements

Question

Differentiate the following function with respect to x(logx)x+xlogx

Solution

Lety=(logx)x+xlogx.............(1)

Now

y=y1+y2..........................(2)

Differentiating (2) with respect x, we get 

dydx=dy1dx+dy2dx.........(3)

Now take log of y1 = (log x)x

logy1=xlog(logx)

Differentiating with respect to x, we get

1y2dy2dx=(2logx)×1x

dy2dx=y2(2logxx)=xlogx(2logxx)................(5)

Adding equation (4) and (5), we get:

dydx=(logx)x(1logx+log(logx))+xlogx(2logxx)

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) Delhi Set 1

RELATED QUESTIONS

Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Find dydx for the function given in the question:

(cos x)y = (cos y)x


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If y=eacos-1x, -1 <= x <= 1 show that (1-x2)d2ydx2-xdydx-a2y=0


Find dydx,ify=sin-1[2x+11+4x]


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If y=logx+logx+logx+...,then show that dydx=1x(2y-1).


If x = asecθ-tanθ,y=asecθ+tanθ,then show thatdydx=-yx.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that dydx=-3y2x.


If x = log(1 + t2), y = t – tan–1t,show that dydx=ex-12.


Find the second order derivatives of the following : x3.logx


If f(x) = logx (log x) then f'(e) is ______


If y = 25log5sinx+16log4cosx then dydx = ______.


If y = log [cos(x5)] then find dydx


If y = log[42x(x2+52x3-4)32], find dydx


If log5 (x4+y4x4-y4) = 2, show that dydx=12x313y2


lf y = 2x2x..., then x(1 - y logx logy)dydx = ______  


ddx(xsinx) = ______ 


If f(x)log(secx)dx = log(log sec x) + c, then f(x) = ______.


If y = e2xsinxxcosx,thendydx=?


log[log(logx5)]


If y = log(1-x21+x2), then dydx is equal to ______.


If log10(x2-y2x2+y2) = 2, then dydx is equal to ______.


If y = log(x+x2+4), show that dydx=1x2+4


If y = 9log3x, find dydx.


If xy = yx, then find dydx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.