Advertisements
Advertisements
प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
उत्तर
`Let y=(logx)^x+x^(logx).............(1)`
`Now `
`y=y_1+y_2 ..........................(2)`
Differentiating (2) with respect x, we get
`dy/dx=dy_1/dx+dy_2/dx.........(3)`
Now take log of y1 = (log x)x
`log y_1 = x log (log x)`
Differentiating with respect to x, we get
`1/y_2 dy_2/dx=(2logx) xx 1/x`
`dy_2/dx=y_2((2logx)/x)=x^(logx)((2logx)/x)................(5)`
Adding equation (4) and (5), we get:
`dy/dx=(logx)^x(1/logx+log(logx))+x^(logx)((2logx)/x)`
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
Find the second order derivatives of the following : x3.logx
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `x^(x^2)`, then `dy/dx` is equal to ______.