मराठी

Differentiate the function with respect to x. (log x)x + xlog x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

(log x)x + xlog x

बेरीज

उत्तर

Let, y = (log x)x + xlog x

Again, let y = u + v

Differentiating both sides with respect to x,

`(dy)/dx = (du)/dx + (dv)/dx`   ....(1)

अब, u = (log x)x

Taking logarithm of both sides,

log v = log (log x)x = x log (log x)         ...[∵ log mn = n log m]

Differentiating both sides with respect to x,

`1/u (du)/dx = x d/dx log (log x) + log (log x) d/dx (x)`

`= x * 1/(log x) d/dx (log x) + log (log x) xx 1`

`= x * 1/(log x) 1/x + log (log x) = 1/(log x) + log (log x)`

`therefore (du)/dx = u [log (log x) + 1/(log x)] = (log x)^x [log (log x) + 1/log x]`

तथा v = `x^(log x)`

Taking logarithm of both sides,

log v = log xlog x = log x log x = (log x)2

Differentiating both sides with respect to x,

`1/v (dv)/dx = d/dx (log x)^2 = 2  log x  d/dx  log x = (2  log x)/x`

`therefore dv/dx = v (2/x log x) = 2/x (x^(log x) log x)`

From equation (1),

`(dy)/dx = (du)/dx + (dv)/dx` 

`∴ dy/dx = (logx^x) [1/logx + (logx)] + x^(log x) [(2 log x)/x]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.5 | Q 7 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


Find the second order derivatives of the following : x3.logx


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


`"d"/"dx" [(cos x)^(log x)]` = ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


Derivative of `log_6`x with respect 6x to is ______


`2^(cos^(2_x)`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


Find `dy/dx`, if y = (sin x)tan x – xlog x.


The derivative of log x with respect to `1/x` is ______.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×