Advertisements
Advertisements
प्रश्न
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
उत्तर
Given that: xm . yn = (x + y)m+n
Taking log on both sides
log xm . yn = log (x + y)m+n ......[∵ log xy = log x + log y]
⇒ log xm + log yn = (m + n) log (x + y)
⇒ m log x + n log y = (m + n) log (x + y)
Differentiating both sides w.r.t. x
⇒ `"m" * "d"/"dx" log x + "n" * "d"/"dx" log y = ("m" + "n") "d"/"dx" log (x + y)`
⇒ `"m" * 1/x + "n" * 1/y * "dy"/"dx" = ("m" + "n") * 1/(x + y) (1 + "dy"/"dx")`
⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) * (1 + "dy"/"dx")`
⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) + ("m" + "n")/(x + y) * "dy"/"dx"`
⇒ `"n"/y * "dy"/"dx" - ("m" + "n")/(x + y) * "dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`
⇒ `("n"/y - ("m" + "n")/(x + y))"dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`
⇒ `(("n"x + "n"y - "m"y - "n"y)/(y(x + y)))"dy"/"dx" = (("m"x + "n"x - "m"x - "m"y)/(x(x + y)))`
⇒ `(("n"x - "m"y)/(y(x + y))) "dy"/"dx" = (("n"x- "m"y)/(x(x + y)))`
⇒ `"dy"/"dx" = ("n"x - "m"y)/(x(x + y)) xx (y(x + y))/("n"x - "m"y)`
⇒ `"dy"/"dx" = y/x`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.