Advertisements
Advertisements
प्रश्न
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
उत्तर
Given that: `"dy"/"dx" = y/x`
Differentiating both sides w.r.t. x
`"d"/"dx"("dy"/"dx") = "d"/"dx"(y/x)`
⇒ `("d"^2y)/("dx"^2) = (x* "dy"/"dx" y*1)/x^2`
= `(x * y/x - 1)/x^2` .....`[because "dy"/"dx" = y/x]`
= `(y - y)/x^2`
= `0/x^2`
= 0
Hence, `("d"^2y)/("dx"^2)` = 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
Discuss the continuity and differentiability of the
If f(x) = x + 1, find `d/dx (fof) (x)`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tan(x + y), find `("d"y)/("d"x)`
Let f(x)= |cosx|. Then, ______.
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
|sinx| is a differentiable function for every value of x.
`sin sqrt(x) + cos^2 sqrt(x)`
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
If sin y = x sin (a + y), then value of dy/dx is
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
The function f(x) = x | x |, x ∈ R is differentiable ______.