Advertisements
Advertisements
प्रश्न
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
पर्याय
`cos/(2y - 1)`
`cosx/(1 - 2y)`
`sinx/(1 - 2y)`
`sinx/(2y - 1)`
उत्तर
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to `cos/(2y - 1)`.
Explanation:
Given that: y = `sqrt(sinx + y)`
Differentiating both sides w.r.t. x
`"dy"/"dx" = 1/(2sqrt(sinx + y)) * "d"/"dx" (sin x + y)`
⇒ `"dy"/"dx" = 1/(2sqrt(sinx + y)) * (cos x + "dy"/"dx")`
⇒ `"dy"/"dx" = 1/(2y) * [cos x + "dy"/"dx"]`
⇒ `"dy"/"dx" = cosx/(2y) + 1/(2y) * "dy"/"dx"`
⇒ `"dy"/"dx" - 1/(2y) * "dy"/"dx" = cosx/(2y)`
⇒ `(1 - 1/(2y))"dy"/"dx" = cosx/(2y)`
⇒ `((2y - 1)/(2y)) "dy"/"dx" = cosx/(2y)`
⇒ `"dy"/"dx" = cosx/(2y) xx (2y)/(2y - 1)`
⇒ `"dy"/"dx" = cosx/(2y - 1)`
APPEARS IN
संबंधित प्रश्न
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
If f(x) = x + 1, find `d/dx (fof) (x)`
cos |x| is differentiable everywhere.
`sin sqrt(x) + cos^2 sqrt(x)`
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
A function is said to be continuous for x ∈ R, if ____________.
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.