Advertisements
Advertisements
प्रश्न
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
उत्तर
Let y = `tan^-1 [(3"a"^2x - x^3)/("a"^3 - 3"a"x^2)]`
Put x = a tan θ
∴ θ = `tan^-1 x/"a"`
y = `tan^-1 [(3"a"^2 * "a"tantheta - "a"^3 tan^3 theta)/("a"^3 - 3"a"*"a"^2 tan^2theta)]`
⇒ y = `tan^-1 [(3"a"^2 tantheta - "a"^3 tan^3theta)/("a"^3 - 3"a"^3 tan^2theta)]`
⇒ y = `tan^-1 [(3tan theta - tan^2ttheta)/(1 - 3tan^2 theta)]`
⇒ y = `tan^-1 [tan 3theta)]` .......`[because tan 3theta = (3tantheta - tan^2theta)/(1 - 3tan^2theta)]`
⇒ y = 3θ
⇒ y = `3tan^-1 x/"a"`
Differentiating both sides w.r.t. x
`"dy"/"dx" = 3*"d"/"dx" (tan^-1 x/"a")`
= `3* 1/(1 + x^2/"a"^2) * "d"/"dx" * (x/"a")`
= `3 * "a"^2/("a"^2 + x^2) * 1/"a"`
= `(3"a")/("a"^2 + x^2)`
Hence, `"dy"/"dx" = (3"a")/("a"^2 + x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate the function with respect to x.
`cos (sqrtx)`
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
Discuss the continuity and differentiability of the
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
If sin y = x sin (a + y), then value of dy/dx is
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.