Advertisements
Advertisements
प्रश्न
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
उत्तर
Let y = `sec^-1 (1/(4x^3 - 3x))`
Put x = cos θ
∴ θ = `cos^-1x`
y = `sec^-1 (1/(4cos^3theta - 3 cos theta))`
⇒ y = `sec^-1 (1/(cos 3theta))` .....[∵ cos 3θ = 4 cos3θ – 3 cos θ]
⇒ y = `sec^-1 (sec 3theta)`
⇒ y = 3θ
y = `3cos^-1x`
Differentiating both sides w.r.t. x
`"dy"/"d" = 3 * "d"/"dx" cos^-1x`
= `3((-1)/sqrt(1 - x^2))`
= `(-3)/sqrt(1 - x^2)`
Hence, `"dy"/"dx" = (-3)/sqrt(1 - x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate the function with respect to x.
`cos (sqrtx)`
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
Discuss the continuity and differentiability of the
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
cos |x| is differentiable everywhere.
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
sinmx . cosnx
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
The function f(x) = x | x |, x ∈ R is differentiable ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.