मराठी

If f(x) = {ax+b;0<x≤12x2-x;1<x<2 is a differentiable function in (0, 2), then find the values of a and b. - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.

बेरीज

उत्तर

We have,

f(x) = `{{:(ax + b: 0 < x ≤ 1),(2x^2 - x: 1 < x < 2):}`

(LHD at x = 1)

= `lim_(x rightarrow 1^-) (f(x) - f(1))/(x - 1)`

= `lim_(h rightarrow 0) (f(1 - h) - f(1))/(1 - h - 1)`

= `lim_(h rightarrow 0) ([a(1 - h) + b] - [a + b])/(-h)`

= `lim_(h rightarrow 0) ([a - ah + b - a - b])/(-h)`

= `lim_(h rightarrow 0) (ah)/a`

= a

(RHD at x = 1)

= `lim_(x rightarrow 1^+) (f(x) - f(1))/(x - 1)`

= `lim_(h rightarrow 0) (f(1 + h) - f(1))/((1 + h) - 1)`

= `lim_(h rightarrow 0) ([2(1 + h)^2 - (1 + h)] - [2 - 1])/h`

= `lim_(h rightarrow 0) ([2(1 + h^2 + 2h) - 1 - h] - 1)/h`

= `lim_(h rightarrow 0) ([2 + 2h^2 + 4h - 1 - h - 1])/h`

= `lim_(h rightarrow 0) ((2h^2 + 3h))/h`

= `lim_(h rightarrow 0) (2h + 3)`

= 3

Since, f(x) is differentiable, so

(LHD at x = 1) = (RHD at x = 1)

∴ a = 3

Now, LHL = `lim_(x rightarrow 1^-) f(x)`

= `lim_(h rightarrow 0) f(1 - h)`

= `lim_(h rightarrow 0) a(1 - h) + b`

= a + b

Now, RHL = `lim_(x rightarrow 1^+) f(x)`

= `lim_(h rightarrow 0) f(1 + h)`

= `lim_(h rightarrow 0) 2(1 + h)^2 - (1 + h)`

= 2 – 1

= 1

∵ LHL = RHS

∴ a + b = 1

`\implies` 3 + b = 1

b = – 2

Hence, a = 3 and b = – 2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x.

`cos (sqrtx)`


Differentiate w.r.t. x the function:

`(5x)^(3cos 2x)`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

Let f(x)= |cosx|. Then, ______.


Differential coefficient of sec (tan–1x) w.r.t. x is ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

cos |x| is differentiable everywhere.


`sin sqrt(x) + cos^2 sqrt(x)`


(x + 1)2(x + 2)3(x + 3)4


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be


If sin y = x sin (a + y), then value of dy/dx is


Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.


If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×