Advertisements
Advertisements
प्रश्न
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
उत्तर
We have,
f(x) = `{{:(ax + b: 0 < x ≤ 1),(2x^2 - x: 1 < x < 2):}`
(LHD at x = 1)
= `lim_(x rightarrow 1^-) (f(x) - f(1))/(x - 1)`
= `lim_(h rightarrow 0) (f(1 - h) - f(1))/(1 - h - 1)`
= `lim_(h rightarrow 0) ([a(1 - h) + b] - [a + b])/(-h)`
= `lim_(h rightarrow 0) ([a - ah + b - a - b])/(-h)`
= `lim_(h rightarrow 0) (ah)/a`
= a
(RHD at x = 1)
= `lim_(x rightarrow 1^+) (f(x) - f(1))/(x - 1)`
= `lim_(h rightarrow 0) (f(1 + h) - f(1))/((1 + h) - 1)`
= `lim_(h rightarrow 0) ([2(1 + h)^2 - (1 + h)] - [2 - 1])/h`
= `lim_(h rightarrow 0) ([2(1 + h^2 + 2h) - 1 - h] - 1)/h`
= `lim_(h rightarrow 0) ([2 + 2h^2 + 4h - 1 - h - 1])/h`
= `lim_(h rightarrow 0) ((2h^2 + 3h))/h`
= `lim_(h rightarrow 0) (2h + 3)`
= 3
Since, f(x) is differentiable, so
(LHD at x = 1) = (RHD at x = 1)
∴ a = 3
Now, LHL = `lim_(x rightarrow 1^-) f(x)`
= `lim_(h rightarrow 0) f(1 - h)`
= `lim_(h rightarrow 0) a(1 - h) + b`
= a + b
Now, RHL = `lim_(x rightarrow 1^+) f(x)`
= `lim_(h rightarrow 0) f(1 + h)`
= `lim_(h rightarrow 0) 2(1 + h)^2 - (1 + h)`
= 2 – 1
= 1
∵ LHL = RHS
∴ a + b = 1
`\implies` 3 + b = 1
b = – 2
Hence, a = 3 and b = – 2.
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`cos (sqrtx)`
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
Discuss the continuity and differentiability of the
Let f(x)= |cosx|. Then, ______.
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
`sin sqrt(x) + cos^2 sqrt(x)`
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
If sin y = x sin (a + y), then value of dy/dx is
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.