Advertisements
Advertisements
प्रश्न
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
उत्तर
We have,
f(x) = `{{:(ax + b: 0 < x ≤ 1),(2x^2 - x: 1 < x < 2):}`
(LHD at x = 1)
= `lim_(x rightarrow 1^-) (f(x) - f(1))/(x - 1)`
= `lim_(h rightarrow 0) (f(1 - h) - f(1))/(1 - h - 1)`
= `lim_(h rightarrow 0) ([a(1 - h) + b] - [a + b])/(-h)`
= `lim_(h rightarrow 0) ([a - ah + b - a - b])/(-h)`
= `lim_(h rightarrow 0) (ah)/a`
= a
(RHD at x = 1)
= `lim_(x rightarrow 1^+) (f(x) - f(1))/(x - 1)`
= `lim_(h rightarrow 0) (f(1 + h) - f(1))/((1 + h) - 1)`
= `lim_(h rightarrow 0) ([2(1 + h)^2 - (1 + h)] - [2 - 1])/h`
= `lim_(h rightarrow 0) ([2(1 + h^2 + 2h) - 1 - h] - 1)/h`
= `lim_(h rightarrow 0) ([2 + 2h^2 + 4h - 1 - h - 1])/h`
= `lim_(h rightarrow 0) ((2h^2 + 3h))/h`
= `lim_(h rightarrow 0) (2h + 3)`
= 3
Since, f(x) is differentiable, so
(LHD at x = 1) = (RHD at x = 1)
∴ a = 3
Now, LHL = `lim_(x rightarrow 1^-) f(x)`
= `lim_(h rightarrow 0) f(1 - h)`
= `lim_(h rightarrow 0) a(1 - h) + b`
= a + b
Now, RHL = `lim_(x rightarrow 1^+) f(x)`
= `lim_(h rightarrow 0) f(1 + h)`
= `lim_(h rightarrow 0) 2(1 + h)^2 - (1 + h)`
= 2 – 1
= 1
∵ LHL = RHS
∴ a + b = 1
`\implies` 3 + b = 1
b = – 2
Hence, a = 3 and b = – 2.
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
Discuss the continuity and differentiability of the
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tan(x + y), find `("d"y)/("d"x)`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Let f(x)= |cosx|. Then, ______.
|sinx| is a differentiable function for every value of x.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`sin sqrt(x) + cos^2 sqrt(x)`
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.