हिंदी

If f(x) = {ax+b;0<x≤12x2-x;1<x<2 is a differentiable function in (0, 2), then find the values of a and b. - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.

योग

उत्तर

We have,

f(x) = `{{:(ax + b: 0 < x ≤ 1),(2x^2 - x: 1 < x < 2):}`

(LHD at x = 1)

= `lim_(x rightarrow 1^-) (f(x) - f(1))/(x - 1)`

= `lim_(h rightarrow 0) (f(1 - h) - f(1))/(1 - h - 1)`

= `lim_(h rightarrow 0) ([a(1 - h) + b] - [a + b])/(-h)`

= `lim_(h rightarrow 0) ([a - ah + b - a - b])/(-h)`

= `lim_(h rightarrow 0) (ah)/a`

= a

(RHD at x = 1)

= `lim_(x rightarrow 1^+) (f(x) - f(1))/(x - 1)`

= `lim_(h rightarrow 0) (f(1 + h) - f(1))/((1 + h) - 1)`

= `lim_(h rightarrow 0) ([2(1 + h)^2 - (1 + h)] - [2 - 1])/h`

= `lim_(h rightarrow 0) ([2(1 + h^2 + 2h) - 1 - h] - 1)/h`

= `lim_(h rightarrow 0) ([2 + 2h^2 + 4h - 1 - h - 1])/h`

= `lim_(h rightarrow 0) ((2h^2 + 3h))/h`

= `lim_(h rightarrow 0) (2h + 3)`

= 3

Since, f(x) is differentiable, so

(LHD at x = 1) = (RHD at x = 1)

∴ a = 3

Now, LHL = `lim_(x rightarrow 1^-) f(x)`

= `lim_(h rightarrow 0) f(1 - h)`

= `lim_(h rightarrow 0) a(1 - h) + b`

= a + b

Now, RHL = `lim_(x rightarrow 1^+) f(x)`

= `lim_(h rightarrow 0) f(1 + h)`

= `lim_(h rightarrow 0) 2(1 + h)^2 - (1 + h)`

= 2 – 1

= 1

∵ LHL = RHS

∴ a + b = 1

`\implies` 3 + b = 1

b = – 2

Hence, a = 3 and b = – 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Outside Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

`sec(tan (sqrtx))`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If f(x) = x + 1, find `d/dx (fof) (x)`


If y = tan(x + y), find `("d"y)/("d"x)`


Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`


Let f(x)= |cosx|. Then, ______.


|sinx| is a differentiable function for every value of x.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


`sin sqrt(x) + cos^2 sqrt(x)`


`cos(tan sqrt(x + 1))`


sinx2 + sin2x + sin2(x2)


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.


Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.


If f(x) = | cos x |, then `f((3π)/4)` is ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×