English

If f(x) = {ax+b;0<x≤12x2-x;1<x<2 is a differentiable function in (0, 2), then find the values of a and b. - Mathematics

Advertisements
Advertisements

Question

If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.

Sum

Solution

We have,

f(x) = `{{:(ax + b: 0 < x ≤ 1),(2x^2 - x: 1 < x < 2):}`

(LHD at x = 1)

= `lim_(x rightarrow 1^-) (f(x) - f(1))/(x - 1)`

= `lim_(h rightarrow 0) (f(1 - h) - f(1))/(1 - h - 1)`

= `lim_(h rightarrow 0) ([a(1 - h) + b] - [a + b])/(-h)`

= `lim_(h rightarrow 0) ([a - ah + b - a - b])/(-h)`

= `lim_(h rightarrow 0) (ah)/a`

= a

(RHD at x = 1)

= `lim_(x rightarrow 1^+) (f(x) - f(1))/(x - 1)`

= `lim_(h rightarrow 0) (f(1 + h) - f(1))/((1 + h) - 1)`

= `lim_(h rightarrow 0) ([2(1 + h)^2 - (1 + h)] - [2 - 1])/h`

= `lim_(h rightarrow 0) ([2(1 + h^2 + 2h) - 1 - h] - 1)/h`

= `lim_(h rightarrow 0) ([2 + 2h^2 + 4h - 1 - h - 1])/h`

= `lim_(h rightarrow 0) ((2h^2 + 3h))/h`

= `lim_(h rightarrow 0) (2h + 3)`

= 3

Since, f(x) is differentiable, so

(LHD at x = 1) = (RHD at x = 1)

∴ a = 3

Now, LHL = `lim_(x rightarrow 1^-) f(x)`

= `lim_(h rightarrow 0) f(1 - h)`

= `lim_(h rightarrow 0) a(1 - h) + b`

= a + b

Now, RHL = `lim_(x rightarrow 1^+) f(x)`

= `lim_(h rightarrow 0) f(1 + h)`

= `lim_(h rightarrow 0) 2(1 + h)^2 - (1 + h)`

= 2 – 1

= 1

∵ LHL = RHS

∴ a + b = 1

`\implies` 3 + b = 1

b = – 2

Hence, a = 3 and b = – 2.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

RELATED QUESTIONS

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x.

`sec(tan (sqrtx))`


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x.

`cos (sqrtx)`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


If f (x) = |x|3, show that f ″(x) exists for all real x and find it.


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


If f(x) = x + 1, find `d/dx (fof) (x)`


Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0


If y = tan(x + y), find `("d"y)/("d"x)`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`


`cos(tan sqrt(x + 1))`


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


A function is said to be continuous for x ∈ R, if ____________.


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be


Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.


The function f(x) = x | x |, x ∈ R is differentiable ______.


If f(x) = | cos x |, then `f((3π)/4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×