Advertisements
Advertisements
Question
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
Solution
We have,
f(x) = `{{:(ax + b: 0 < x ≤ 1),(2x^2 - x: 1 < x < 2):}`
(LHD at x = 1)
= `lim_(x rightarrow 1^-) (f(x) - f(1))/(x - 1)`
= `lim_(h rightarrow 0) (f(1 - h) - f(1))/(1 - h - 1)`
= `lim_(h rightarrow 0) ([a(1 - h) + b] - [a + b])/(-h)`
= `lim_(h rightarrow 0) ([a - ah + b - a - b])/(-h)`
= `lim_(h rightarrow 0) (ah)/a`
= a
(RHD at x = 1)
= `lim_(x rightarrow 1^+) (f(x) - f(1))/(x - 1)`
= `lim_(h rightarrow 0) (f(1 + h) - f(1))/((1 + h) - 1)`
= `lim_(h rightarrow 0) ([2(1 + h)^2 - (1 + h)] - [2 - 1])/h`
= `lim_(h rightarrow 0) ([2(1 + h^2 + 2h) - 1 - h] - 1)/h`
= `lim_(h rightarrow 0) ([2 + 2h^2 + 4h - 1 - h - 1])/h`
= `lim_(h rightarrow 0) ((2h^2 + 3h))/h`
= `lim_(h rightarrow 0) (2h + 3)`
= 3
Since, f(x) is differentiable, so
(LHD at x = 1) = (RHD at x = 1)
∴ a = 3
Now, LHL = `lim_(x rightarrow 1^-) f(x)`
= `lim_(h rightarrow 0) f(1 - h)`
= `lim_(h rightarrow 0) a(1 - h) + b`
= a + b
Now, RHL = `lim_(x rightarrow 1^+) f(x)`
= `lim_(h rightarrow 0) f(1 + h)`
= `lim_(h rightarrow 0) 2(1 + h)^2 - (1 + h)`
= 2 – 1
= 1
∵ LHL = RHS
∴ a + b = 1
`\implies` 3 + b = 1
b = – 2
Hence, a = 3 and b = – 2.
RELATED QUESTIONS
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`cos (sqrtx)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If f(x) = x + 1, find `d/dx (fof) (x)`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tan(x + y), find `("d"y)/("d"x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
`cos(tan sqrt(x + 1))`
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
A function is said to be continuous for x ∈ R, if ____________.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
The function f(x) = x | x |, x ∈ R is differentiable ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.