English

Differentiate the function with respect to x. sin (ax + b) - Mathematics

Advertisements
Advertisements

Question

Differentiate the function with respect to x.

sin (ax + b)

Sum

Solution

Let, y = sin (ax + b)

Putting ax + b = 1,

y = sin t, t = ax + b

`dy/dt = cos t, dt/dx = d/dx (ax + b)` = a

`therefore dy/dx = dy/dt xx dt/dx`

= cos t · a

= a cos t

= a cos (ax + b)

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.2 [Page 166]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.2 | Q 3 | Page 166

RELATED QUESTIONS

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x.

`cos (sqrtx)`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

sin3 x + cos6 x


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0


If y = tan(x + y), find `("d"y)/("d"x)`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Let f(x)= |cosx|. Then, ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

Show that the function f(x) = |sin x + cos x| is continuous at x = π.


`sin sqrt(x) + cos^2 sqrt(x)`


sinx2 + sin2x + sin2(x2)


(sin x)cosx 


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be


`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to


If sin y = x sin (a + y), then value of dy/dx is


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


If f(x) = | cos x |, then `f((3π)/4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×