Advertisements
Advertisements
Question
`sin sqrt(x) + cos^2 sqrt(x)`
Solution
Let y = `sin sqrt(x) + cos^2 sqrt(x)`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" (sin sqrt(x)) + "d"/"dx" (cos^2 sqrt(x))`
= `cos sqrt(x) * "d"/"dx" (sqrt(x)) + 2cossqrt(x)* "d"/"dx" (cos sqrt(x))`
= `cossqrt(x) * 1/(2sqrt(x)) + 2cos sqrt(x) (- sin sqrt(x)) * "d"/"dx" sqrt(x)`
= `1/(2sqrt(x)) * cos sqrt(x) - 2 cos sqrt(x) * sin sqrt(x) * 1/(2sqrt(x))`
= `(cos sqrt(x))/(2sqrt(x)) - (sin 2sqrt(x))/(2sqrt(x))`
Hence, `"dy"/"dx" = (cos sqrt(x))/(2sqrt(x)) - (sin 2sqrt(x))/(2sqrt(x))`.
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
cos (sin x)
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
sinx2 + sin2x + sin2(x2)
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
If sin y = x sin (a + y), then value of dy/dx is
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = | cos x |, then `f((3π)/4)` is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.