English

COLUMN-I COLUMN-II (A) If a function f(x) = ifk,if{sin3xxif x=0k2, if x=0 is continuous at x = 0, then k is equal to (a) |x| (B) Every continuous function is differentiable (b) True (C) An - Mathematics

Advertisements
Advertisements

Question

COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False
Match the Columns

Solution

COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(c) 6
(B) Every continuous function is differentiable (d) False
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(a) |x|
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(b) True
shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Solved Examples [Page 105]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Solved Examples | Q 36 | Page 105

RELATED QUESTIONS

Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x.

`sec(tan (sqrtx))`


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Differentiate the function with respect to x.

`cos (sqrtx)`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

sin3 x + cos6 x


if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


Differential coefficient of sec (tan–1x) w.r.t. x is ______.


`sin sqrt(x) + cos^2 sqrt(x)`


`cos(tan sqrt(x + 1))`


sinx2 + sin2x + sin2(x2)


`sin^-1  1/sqrt(x + 1)`


sinmx . cosnx


(x + 1)2(x + 2)3(x + 3)4


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.


If sin y = x sin (a + y), then value of dy/dx is


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.


The function f(x) = x | x |, x ∈ R is differentiable ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×