Advertisements
Advertisements
Question
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
Options
`cos/(2y - 1)`
`cosx/(1 - 2y)`
`sinx/(1 - 2y)`
`sinx/(2y - 1)`
Solution
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to `cos/(2y - 1)`.
Explanation:
Given that: y = `sqrt(sinx + y)`
Differentiating both sides w.r.t. x
`"dy"/"dx" = 1/(2sqrt(sinx + y)) * "d"/"dx" (sin x + y)`
⇒ `"dy"/"dx" = 1/(2sqrt(sinx + y)) * (cos x + "dy"/"dx")`
⇒ `"dy"/"dx" = 1/(2y) * [cos x + "dy"/"dx"]`
⇒ `"dy"/"dx" = cosx/(2y) + 1/(2y) * "dy"/"dx"`
⇒ `"dy"/"dx" - 1/(2y) * "dy"/"dx" = cosx/(2y)`
⇒ `(1 - 1/(2y))"dy"/"dx" = cosx/(2y)`
⇒ `((2y - 1)/(2y)) "dy"/"dx" = cosx/(2y)`
⇒ `"dy"/"dx" = cosx/(2y) xx (2y)/(2y - 1)`
⇒ `"dy"/"dx" = cosx/(2y - 1)`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
Discuss the continuity and differentiability of the
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
cos |x| is differentiable everywhere.
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
A function is said to be continuous for x ∈ R, if ____________.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.