English

If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that [1+(dydx)2]32d2ydx2 is a constant independent of a and b. - Mathematics

Advertisements
Advertisements

Question

If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.

Sum

Solution

Here,  (x – a)2 + (y – b)2 = (Given)                    …(1)

On differentiating with respect to x,

`=> 2 (x - a) + 2(y - b)^2  dy/dx = 0`

`=> (x - a) + (y - b)  dy/dx = 0`                 ...(2)

Differentiating again with respect to x,

`1 + dy/dx * dy/dx + (y - b) (d^2 y)/dx^2` = 0

`1 + (dy/dx)^2 + (y - b) (d^2y)/dx^2` = 0

`=> (y - b) = - {(1 + (dy/dx)^2)/((d^2y)/dx^2)}`            ...(3)

Putting the value of (y – b) in (2),

`(x - a) = (1 + (dy/dx)^2)/((d^2 y)/dx^2) * dy/dx`

या `(x - a) = {(1 + (dy/dx)^2)/((d^2y)/dx^2)}(dy/dx)`            ...(4)

Putting the values ​​of (x - a) and (y - b) from (3) and (4) in (1),

`{1 + (dy/dx)^2}^2/((d^2y)/dx^2)^2 * (dy/dx)^2 + {(1 + (dy/dx)^2)/((d^2y)/dx^2)} = c^2`

On multiplying by `((d^2y)/dx^2)^2,`

`[1 + (dy/dx)^2]^2 (dy/dx)^2 + [1 + (dy/dx)^2]^2`

`= c^2 ((d^2y)/dx)^2`

`=> [1 + (dy/dx)^2]^2 [(dy/dx)^2 + 1] = c^2 ((d^2y)/dx^2)^2`

`=> {1 + (dy/dx)^2}^3 = c^2 ((d^2y)/dx^2)^2`

On taking the square root,

`therefore {1 + (dy/dx)^2}^(3//2)/((d^2y)/dx^2)` = c      ...(a constant independent of a and b.)

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 191]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 15 | Page 191

RELATED QUESTIONS

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Differentiate w.r.t. x the function:

`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


Differential coefficient of sec (tan–1x) w.r.t. x is ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


`sin sqrt(x) + cos^2 sqrt(x)`


sinx2 + sin2x + sin2(x2)


(sin x)cosx 


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be


If sin y = x sin (a + y), then value of dy/dx is


Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.


If f(x) = `{{:((sin(p  +  1)x  +  sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x  +  x^2)  -  sqrt(x))/(x^(3//2)),",", x > 0):}`

is continuous at x = 0, then the ordered pair (p, q) is equal to ______.


If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.


The function f(x) = x | x |, x ∈ R is differentiable ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×