Advertisements
Advertisements
Question
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Solution
Let, y = `(cos^-1 x/2)/(sqrt(2x + 7)) = u/v`
`therefore u = cos^-1 x/2, v = sqrt(2x + 7)`
Now, u = `cos^-1 x/2`
On differentiating with respect to x,
`(du)/dx = d/dx cos^-1 x/2`
`= - 1/(sqrt(1 - x^2/4)) d/dx (x/2)`
`= - 2/(sqrt(4 - x^2)) * 1/2`
`= (-1)/sqrt(4 - x^2)` ...(1)
and v = `sqrt(2x + 7)`
On differentiating with respect to x,
`(dv)/dx = 1/2 (2x - 7)^(1/2 - 1) d/dx (2x - 7)`
`= 1/2 (2x - 7)^(- 1//2) (2) = 1/(sqrt(2x + 7))` ...(2)
y = `u/v`
∴ `dy/dx = (v (du)/dx - u (dv)/dx)/v^2` ... [(1) and (2) substituting the value of]
`= (- 1/(sqrt(4 - x^2)) xx sqrt(2x + 7) - (cos^-1 x/2)/sqrt(2x + 7))/((2x + 7))`
`= - [1/(sqrt(4 - x^2) sqrt(2x + 7)) + (cos^-1 x/2)/(2x + 7)^(3//2)]`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tan(x + y), find `("d"y)/("d"x)`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
(sin x)cosx
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
A function is said to be continuous for x ∈ R, if ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
If sin y = x sin (a + y), then value of dy/dx is
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.