Advertisements
Advertisements
Question
If y = tan(x + y), find `("d"y)/("d"x)`
Solution
Given y = tan (x + y).
Differentiating both sides w.r.t. x, we have
`("d"y)/("d"x) = sec^2 (x + y) "d"/("d"x) (x + y)`
= `sec^2 (x + y) (1 + ("d"y)/("d"x))`
or `[1 - sec^2 (x + y)] ("d"y)/("d"x) = sec^2 (x + y)`
Therefore, `("d"y)/("d"x) = (sec^2(x + y))/(1 - sec^2(x + y)) = - "cosec"^2 (x + y)`
APPEARS IN
RELATED QUESTIONS
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
Let f(x)= |cosx|. Then, ______.
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`sin sqrt(x) + cos^2 sqrt(x)`
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
If sin y = x sin (a + y), then value of dy/dx is
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
If f(x) = | cos x |, then `f((3π)/4)` is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.