Advertisements
Advertisements
Question
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
Solution
Let y = `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
Putting x2 = cos 2θ
∴ θ = `1/2 cos^-1 x^2`
y = `tan^-1 ((sqrt(1 + cos 2theta) + sqrt(1 - cos 2theta))/(sqrt(1 + cos 2theta) - sqrt(1 - cos 2theta)))`
⇒ y = `tan^-1 ((sqrt(2cos^2theta) + sqrt(2sin^2theta))/(sqrt(2cos^2theta) - sqrt(2sin^2theta)))`
⇒ y = `tan ((sqrt(2) cos theta + sqrt(2) sin theta)/(sqrt(2) cos theta - sqrt(2) sin theta))`
⇒ y = `tan^-1 ((cos theta + sin theta)/(cos theta - sin theta))`
⇒ y = `tan^-1 [((costheta)/(costheta) + (sintheta)/(costheta))/((costheta)/(costheta) - (sintheta)/(costheta))]`
⇒ y = `tan^-1 [(1 + tan theta)/(1 - tan theta)]`
⇒ y = `tan^-1 [(tan pi/4 + tan theta)/(1 - tan pi/4 * tan theta)]`
⇒ y = `tan^-1 [tan (pi/4 + theta)]`
⇒ y = `pi/4 + theta`
⇒ y = `pi/4 + 1/2 cos^-1 x^2`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" (pi/4) + 1/2 "d"/"dx" (cos^-1 x^2)`
= `0 + 1/2 xx (-1)/sqrt(1 - x^4) * "d"/"dx" (x^2)`
= `(-1.2x)/(2sqrt(1 - x^4)`
= `- x/sqrt(1 - 4x^4)`
Hence, `"dy"/"dx" = - x/sqrt(1 - x^4)`.
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
If y = tan(x + y), find `("d"y)/("d"x)`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
|sinx| is a differentiable function for every value of x.
`sin sqrt(x) + cos^2 sqrt(x)`
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
A function is said to be continuous for x ∈ R, if ____________.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
If sin y = x sin (a + y), then value of dy/dx is
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
The function f(x) = x | x |, x ∈ R is differentiable ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.