Advertisements
Advertisements
प्रश्न
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
उत्तर
Let y = `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
Putting x2 = cos 2θ
∴ θ = `1/2 cos^-1 x^2`
y = `tan^-1 ((sqrt(1 + cos 2theta) + sqrt(1 - cos 2theta))/(sqrt(1 + cos 2theta) - sqrt(1 - cos 2theta)))`
⇒ y = `tan^-1 ((sqrt(2cos^2theta) + sqrt(2sin^2theta))/(sqrt(2cos^2theta) - sqrt(2sin^2theta)))`
⇒ y = `tan ((sqrt(2) cos theta + sqrt(2) sin theta)/(sqrt(2) cos theta - sqrt(2) sin theta))`
⇒ y = `tan^-1 ((cos theta + sin theta)/(cos theta - sin theta))`
⇒ y = `tan^-1 [((costheta)/(costheta) + (sintheta)/(costheta))/((costheta)/(costheta) - (sintheta)/(costheta))]`
⇒ y = `tan^-1 [(1 + tan theta)/(1 - tan theta)]`
⇒ y = `tan^-1 [(tan pi/4 + tan theta)/(1 - tan pi/4 * tan theta)]`
⇒ y = `tan^-1 [tan (pi/4 + theta)]`
⇒ y = `pi/4 + theta`
⇒ y = `pi/4 + 1/2 cos^-1 x^2`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" (pi/4) + 1/2 "d"/"dx" (cos^-1 x^2)`
= `0 + 1/2 xx (-1)/sqrt(1 - x^4) * "d"/"dx" (x^2)`
= `(-1.2x)/(2sqrt(1 - x^4)`
= `- x/sqrt(1 - 4x^4)`
Hence, `"dy"/"dx" = - x/sqrt(1 - x^4)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If f(x) = x + 1, find `d/dx (fof) (x)`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
If sin y = x sin (a + y), then value of dy/dx is
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.