Advertisements
Advertisements
प्रश्न
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
उत्तर
y = `|(f(x), g(x), h(x)),(l, m, n),(a, b, c)|`
`dy/dx= |(d/dx (f(x)), d/dx (g(x)), d/dx (h(x))), (l, m , n), (a, b, c)|`
` + |(f(x), g(x), h(x)),(0, 0, 0),(a, b, c)| + |(f(x), g(x), h(x)),(l, m, n),(0, 0, 0)|`
`= |(f'(x), g'(x), h'(x)),(l, m, n),(a, b, c)|`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`cos (sqrtx)`
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tan(x + y), find `("d"y)/("d"x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Let f(x)= |cosx|. Then, ______.
cos |x| is differentiable everywhere.
sinx2 + sin2x + sin2(x2)
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.