Advertisements
Advertisements
प्रश्न
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
उत्तर
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is – 1.
Explanation:
Given that: `sqrt(x) + sqrt(y)` = 1
Differentiating both sides w.r.t. x
`1/(2sqrt(x)) + 1/(2sqrt(y)) * "dy"/"dx"` = 0
⇒ `1/sqrt(x) + 1/sqrt(y) "dy"/"dx"` = 0
⇒ `1/sqrt(y) "dy"/"dx" = (-1)/sqrt(x)`
⇒ `"dy"/"dx" = (-sqrt(y))/sqrt(x)`
∴ `"dy"/"dx"` at `(1/4, 1/4) = - sqrt(1/4)/sqrt(1/4)`
= – 1.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate the function with respect to x.
`cos (sqrtx)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tan(x + y), find `("d"y)/("d"x)`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Let f(x)= |cosx|. Then, ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
sinn (ax2 + bx + c)
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
A function is said to be continuous for x ∈ R, if ____________.
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.