हिंदी

For the curve x+y = 1, dydxdydx at (14,14) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.

रिक्त स्थान भरें

उत्तर

For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is – 1.

Explanation:

Given that: `sqrt(x) + sqrt(y)` = 1

Differentiating both sides w.r.t. x

`1/(2sqrt(x)) + 1/(2sqrt(y)) * "dy"/"dx"` = 0

⇒ `1/sqrt(x) + 1/sqrt(y)  "dy"/"dx"` = 0

⇒ `1/sqrt(y) "dy"/"dx" = (-1)/sqrt(x)`

⇒ `"dy"/"dx" = (-sqrt(y))/sqrt(x)`

∴ `"dy"/"dx"` at `(1/4, 1/4) = - sqrt(1/4)/sqrt(1/4)`

= – 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 101 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Differentiate the function with respect to x.

`cos (sqrtx)`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

sin3 x + cos6 x


Differentiate w.r.t. x the function:

`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3


If f(x) = x + 1, find `d/dx (fof) (x)`


If y = tan(x + y), find `("d"y)/("d"x)`


Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`


Let f(x)= |cosx|. Then, ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

cos |x| is differentiable everywhere.


sinn (ax2 + bx + c)


(sin x)cosx 


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


A function is said to be continuous for x ∈ R, if ____________.


If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`


A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.


Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×