हिंदी

If u = sin-1(2x1+x2) and v = tan-1(2x1-x2), then dudvdudv is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.

विकल्प

  • `1/2`

  • x

  • `(1 - x^2)/(1 + x^2)`

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Solved Examples [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Solved Examples | Q 33 | पृष्ठ १०५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

`sec(tan (sqrtx))`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Differentiate the function with respect to x.

`cos (sqrtx)`


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


If f (x) = |x|3, show that f ″(x) exists for all real x and find it.


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


If f(x) = x + 1, find `d/dx (fof) (x)`


Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0


Let f(x)= |cosx|. Then, ______.


|sinx| is a differentiable function for every value of x.


sinn (ax2 + bx + c)


sinx2 + sin2x + sin2(x2)


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


A function is said to be continuous for x ∈ R, if ____________.


If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


The function f(x) = x | x |, x ∈ R is differentiable ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×