Advertisements
Advertisements
प्रश्न
sinn (ax2 + bx + c)
उत्तर
Let y = sinn (ax2 + bx + c)
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" sin^"n" ("a"x^2 + "b"x + "c")`
= `"n" * sin^("n" - 1) ("a"x^2 + "b"x + "c") * "d"/"dx" sin("a"x^2 + "b"x + "c")`
= `"n" * sin^("n" - 1) ("a"x^2 + "b"x + "c") * cos("a"x^2 + "b"x + "c") * "d"/"dx" ("a"x^2 + "b"x + "c")`
= `"n" * sin^("n" - 1) ("a"x^2 + "b"x + "c") * cos("a"x^2 + "b"x + "c") * (2"a"x + "b")`
Hence, `"dy"/"dx" = "n" (2"a"x + "b") * sin^("n" - 1)("a"x^2 + "b"x + "c")*cos("a"x^2 + "b"x + "c")`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`cos (sqrtx)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Let f(x)= |cosx|. Then, ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
If sin y = x sin (a + y), then value of dy/dx is
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.