हिंदी

Tan-1(secx+tanx),-π2<x<π2 - Mathematics

Advertisements
Advertisements

प्रश्न

`tan^-1 (secx + tanx), - pi/2 < x < pi/2`

योग

उत्तर

Let y = tan–1(sec x + tan x)

Differentiating both sides w.r.t. x

`"dy"/"dx" = "d"/"dx" [tan^-1 (secx + tanx)]`

= `1/(1 + (secx + tanx)^2) * "d"/"dx"(secx + tanx)`

= `1/(1 + sec^2 + tan^2x + 2 sec  x tanx) * (secx tanx + sec^2x)`

= `1/((1 + tan^2x) + sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(sec^2x + sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(2sec^2x + 2secx tanx) * secx(tanx + secx)`

= `1/(2secx(secx + tanx)) * secx(tanx + secx)`

= `1/2`

Hence, `"dy"/"dx" = 1/2`

Alternative solution:

Let y = `tan^-1 (secx + tanx), (-pi)/2 < x < pi/2`

= `tan^-1 (1/cosx + sinx/cosx)`

= `tan^-1 ((1 + sinx)/cosx)`

= `tan^-1 [(cos^2  x/2 + sin^2  x/2 + 2sin  x/2 cos  x/2)/(cos^2  x/2 - sin^2  x/2)]`  ......`[(because  2x = 2sinx cosx),(cos2x = cos^2x - sin^2x)]` 

= `tan^-1 [(cos  x/2 + sin  x/2)^2/((cos  x/2 + sin  x/2)(cos  x/2 - sin  x/2))]`

= `tan^-1 [(cos  x/2 + sin  x/2)/(cos  x/2 - sin  x/2)]`

= `tan^-1  [(1 + tan  x/2)/(1 - tan  x/2)]`  .....[Dividing the Nr. and Den. by cos  `x/2`]

= `tan^-1  [(tan  pi/4 + tan  x/2),(1 - tan  pi/4 * tan  x/2)]`

= `tan^-1 [tan (pi/4 + x/2)]`

∴ y = `pi/4 + x/2`

Differentiating both sides w.r.t. x

`"dy"/"dx" = 1/2  "d"/"dx" (x)`

= `1/2 * 1`

= `1/2`

Hence, `"dy"/"dx" = 1/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 39 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

`sec(tan (sqrtx))`


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Differentiate the function with respect to x.

`cos (sqrtx)`


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


If f (x) = |x|3, show that f ″(x) exists for all real x and find it.


Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0


If y = tan(x + y), find `("d"y)/("d"x)`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Let f(x)= |cosx|. Then, ______.


Differential coefficient of sec (tan–1x) w.r.t. x is ______.


`sin sqrt(x) + cos^2 sqrt(x)`


sinn (ax2 + bx + c)


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


A function is said to be continuous for x ∈ R, if ____________.


If sin y = x sin (a + y), then value of dy/dx is


A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×