हिंदी

Aaaatan-1(3a2x-x3a3-3ax2),-13<xa<13 - Mathematics

Advertisements
Advertisements

प्रश्न

`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`

योग

उत्तर

Let y = `tan^-1 [(3"a"^2x - x^3)/("a"^3 - 3"a"x^2)]`

Put x = a tan θ

∴ θ = `tan^-1  x/"a"`

y = `tan^-1 [(3"a"^2 * "a"tantheta - "a"^3 tan^3 theta)/("a"^3 - 3"a"*"a"^2 tan^2theta)]`

⇒ y = `tan^-1 [(3"a"^2 tantheta - "a"^3 tan^3theta)/("a"^3 - 3"a"^3 tan^2theta)]`

⇒ y = `tan^-1 [(3tan theta - tan^2ttheta)/(1 - 3tan^2 theta)]`

⇒ y = `tan^-1 [tan 3theta)]`  .......`[because tan 3theta = (3tantheta - tan^2theta)/(1 - 3tan^2theta)]`

⇒ y = 3θ

⇒ y = `3tan^-1  x/"a"`

Differentiating both sides w.r.t. x

`"dy"/"dx" = 3*"d"/"dx" (tan^-1  x/"a")`

= `3* 1/(1 + x^2/"a"^2) * "d"/"dx" * (x/"a")`

= `3 * "a"^2/("a"^2 + x^2) * 1/"a"`

= `(3"a")/("a"^2 + x^2)`

Hence, `"dy"/"dx" = (3"a")/("a"^2 + x^2)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 42 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate w.r.t. x the function:

`(5x)^(3cos 2x)`


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Differentiate w.r.t. x the function:

`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3


If f (x) = |x|3, show that f ″(x) exists for all real x and find it.


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`


If y = tan(x + y), find `("d"y)/("d"x)`


Let f(x)= |cosx|. Then, ______.


|sinx| is a differentiable function for every value of x.


cos |x| is differentiable everywhere.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


`cos(tan sqrt(x + 1))`


sinmx . cosnx


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be


If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


If f(x) = `{{:((sin(p  +  1)x  +  sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x  +  x^2)  -  sqrt(x))/(x^(3//2)),",", x > 0):}`

is continuous at x = 0, then the ordered pair (p, q) is equal to ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×