Advertisements
Advertisements
प्रश्न
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
उत्तर
Let y = `tan^-1 [(3"a"^2x - x^3)/("a"^3 - 3"a"x^2)]`
Put x = a tan θ
∴ θ = `tan^-1 x/"a"`
y = `tan^-1 [(3"a"^2 * "a"tantheta - "a"^3 tan^3 theta)/("a"^3 - 3"a"*"a"^2 tan^2theta)]`
⇒ y = `tan^-1 [(3"a"^2 tantheta - "a"^3 tan^3theta)/("a"^3 - 3"a"^3 tan^2theta)]`
⇒ y = `tan^-1 [(3tan theta - tan^2ttheta)/(1 - 3tan^2 theta)]`
⇒ y = `tan^-1 [tan 3theta)]` .......`[because tan 3theta = (3tantheta - tan^2theta)/(1 - 3tan^2theta)]`
⇒ y = 3θ
⇒ y = `3tan^-1 x/"a"`
Differentiating both sides w.r.t. x
`"dy"/"dx" = 3*"d"/"dx" (tan^-1 x/"a")`
= `3* 1/(1 + x^2/"a"^2) * "d"/"dx" * (x/"a")`
= `3 * "a"^2/("a"^2 + x^2) * 1/"a"`
= `(3"a")/("a"^2 + x^2)`
Hence, `"dy"/"dx" = (3"a")/("a"^2 + x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
If y = tan(x + y), find `("d"y)/("d"x)`
Let f(x)= |cosx|. Then, ______.
|sinx| is a differentiable function for every value of x.
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`cos(tan sqrt(x + 1))`
sinmx . cosnx
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.