Advertisements
Advertisements
प्रश्न
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
विकल्प
`x/sqrt(1 + x^2)`
`x/(1 + x^2)`
`xsqrt(1 + x^2)`
`1/sqrt(1 + x^2)`
उत्तर
Differential coefficient of sec (tan–1x) w.r.t. x is `x/sqrt(1 + x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tan(x + y), find `("d"y)/("d"x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Let f(x)= |cosx|. Then, ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
|sinx| is a differentiable function for every value of x.
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
If sin y = x sin (a + y), then value of dy/dx is
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
The function f(x) = x | x |, x ∈ R is differentiable ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.