हिंदी

If xm . yn = (x + y)m+n, prove that dydxd2ydx2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0

योग

उत्तर

Given that: `"dy"/"dx" = y/x`

Differentiating both sides w.r.t. x

`"d"/"dx"("dy"/"dx") = "d"/"dx"(y/x)`

⇒ `("d"^2y)/("dx"^2) = (x* "dy"/"dx" y*1)/x^2`

= `(x * y/x - 1)/x^2`   .....`[because "dy"/"dx" = y/x]`

= `(y - y)/x^2`

= `0/x^2`

= 0

Hence, `("d"^2y)/("dx"^2)` = 0.

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 80. (ii) | पृष्ठ ११३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Differentiate the function with respect to x.

`cos (sqrtx)`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Let f(x)= |cosx|. Then, ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

cos |x| is differentiable everywhere.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


`sin sqrt(x) + cos^2 sqrt(x)`


`cos(tan sqrt(x + 1))`


sinx2 + sin2x + sin2(x2)


(sin x)cosx 


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


If sin y = x sin (a + y), then value of dy/dx is


If f(x) = `{{:((sin(p  +  1)x  +  sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x  +  x^2)  -  sqrt(x))/(x^(3//2)),",", x > 0):}`

is continuous at x = 0, then the ordered pair (p, q) is equal to ______.


Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×