Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
उत्तर
Let, y = `2 sqrt(cot (x^2))`
y = 2 (cot x2)1/2
On differentiating with respect to x,
`dy/dx = 2 d/dx sqrt (cot(x)^2) = 2* 1/2 {cot (x^2)}^(-1/2)* d/dx cot (x^2)`
= `1/(sqrtcot(x^2))* {-cosec^2(x^2)} d/dx (x^2)`
= `1/sqrt(cot(x^2))* {- cosec^2 (x^2)} (2x)`
= `(-2x cosec^2 (x)^2)/(sqrtcot(x^2))`
= `(-2x)/(sin^2 x^2) xx 1/(cossqrtx^2/sinsqrtx^2)`
= `(-2x)/((sinx^2)sqrt(sinx^2) sqrt(cosx^2)`
= `(-2xsqrt2)/(sinx^2 sqrt(2sinx^2 cosx^2))`
= `(-2sqrt(2x))/(sinx^2 sqrt(sin2x^2))`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
|sinx| is a differentiable function for every value of x.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
The function f(x) = x | x |, x ∈ R is differentiable ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.