Advertisements
Advertisements
प्रश्न
The function f(x) = x | x |, x ∈ R is differentiable ______.
विकल्प
only at x = 0
only at x = 1
in R
in R – {0}
उत्तर
The function f(x) = x | x |, x ∈ R is differentiable in R.
Explanation:
f(x) = x | x |, x ∈ R is differentiable.
= `{{:(x^2 ≥ 0,),(-x^2",", x < 0):}` if x ≠ 0, then the function is quadratic so is differentiable. The only point to consider is 0. But since both x2 and – x2 have same derivative at 0, then it follows that f is differentiable at 0.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
|sinx| is a differentiable function for every value of x.
(sin x)cosx
sinmx . cosnx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
A function is said to be continuous for x ∈ R, if ____________.
If sin y = x sin (a + y), then value of dy/dx is
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.