Advertisements
Advertisements
प्रश्न
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
उत्तर
Let y = `tan^-1 [sqrt((1 - cos x)/(1 + cos x))]`
= `tan^-1 [sqrt((2sin^2 x/2)/(2 cos^2 x/2))]` ......`[(because 1 - cos x = 2sinx^2 x/2),(1 + cos x = 2 cos^2 x/2)]`
= `tan^-1 [(sin x/2)/(cos x/2)]`
= `tan^-1 [tan x/2]`
∴ y = `x/2`
Differentiating both sides w.r.t. x
`"dy"/"dx" = 1/2 "d"/"dx"(x)`
= `1/2 * 1`
= `1/2`
Hence, `"dy"/"dx" = 1/2`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
Discuss the continuity and differentiability of the
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Let f(x)= |cosx|. Then, ______.
|sinx| is a differentiable function for every value of x.
`sin sqrt(x) + cos^2 sqrt(x)`
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
A function is said to be continuous for x ∈ R, if ____________.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.