हिंदी

Discuss the Continuity and Differentiability of the F ( X ) = | X | + | X − 1 | in the Interval ( − 1 , 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]
संक्षेप में उत्तर

उत्तर

\[\text { Given: } f\left( x \right) = \left| x \right| + \left| x - 1 \right|\]
\[\left| x \right| = - x \text { for } x < 0\]
\[\left| x \right| = x \text { for }x > 0\]
\[\left| x - 1 \right| = - \left( x - 1 \right) = - x + 1 \text { for } x - 1 < 0 \text { or }x < 1\]
\[\left| x - 1 \right| = x - 1 \text { for } x - 1 > 0 \text { or }x > 1\]
Now, 
\[f\left( x \right) = - x - x + 1 = - 2x + 1 x \in \left( - 1, 0 \right)\]
or
\[f\left( x \right) = x - x + 1 = 1 x \in \left( 0, 1 \right)\]
or
\[f\left( x \right) = x + x - 1 = 2x - 1 x \in \left( 1, 2 \right)\]
Now,
\[\text { LHL } = \lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^-} - 2x + 1 = 0 + 1 = 1\]
\[\text { RHL } = \lim_{x \to 0^+} f\left( x \right) = \lim_{x \to 0^+} 1 = 1\]
\[\text { Hence, at x  = 0, LHL = RHL}\]

Again, 
\[\text { LHL } = \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^-} 1 = 1\]
\[\text { RHL} = \lim_{x \to 1^+} f\left( x \right) = \lim_{x \to 1^+} 2x - 1 = 2 - 1 = 1\]
\[\text { Hence, at x  = 1, LHL = RHL}\]
Now, 
\[f\left( x \right) = - x - x + 1 = - 2x + 1 x \in \left( - 1, 0 \right)\]
\[ \Rightarrow f'\left( x \right) = - 2 x \in \left( - 1, 0 \right)\]
\[or\]
\[f\left( x \right) = x - x + 1 = 1 x \in \left( 0, 1 \right)\]
\[ \Rightarrow f'\left( x \right) = 0 x \in \left( 0, 1 \right)\]
\[or\]
\[f\left( x \right) = x + x - 1 = 2x - 1 x \in \left( 1, 2 \right)\]
\[ \Rightarrow f'\left( x \right) = 2 x \in \left( 1, 2 \right)\]
Now, 
\[\text { LHL }= \lim_{x \to 0^-} f'\left( x \right) = \lim_{x \to 0^-} - 2 = - 2\]
\[\text { RHL }= \lim_{x \to 0^+} f'\left( x \right) = \lim_{x \to 0^+} 0 = 0\]
\[\text { Since, at x = 0, LHL } \neq \text { RHL}\]
\[\text { Hence,} f\left( x \right) \text { is not differentiable at } x = 0\]
Again, 
\[\text { LHL }= \lim_{x \to 1^-} f'\left( x \right) = \lim_{x \to 1^-} 0 = 0\]
\[\text { RHL } = \lim_{x \to 1^+} f'\left( x \right) = \lim_{x \to 1^+} 2 = 2\]
\[\text { Since, at } x = 1, \text { LHL } \neq \text { RHL }\]
\[\text { Hence }, f\left( x \right) \text { is not differentiable at } x = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.1 | Q 5 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate the function with respect to x.

`cos (sqrtx)`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

`(5x)^(3cos 2x)`


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


Let f(x)= |cosx|. Then, ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

|sinx| is a differentiable function for every value of x.


cos |x| is differentiable everywhere.


sinx2 + sin2x + sin2(x2)


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×