Advertisements
Advertisements
प्रश्न
Discuss the continuity and differentiability of the
उत्तर
\[\text { Given: } f\left( x \right) = \left| x \right| + \left| x - 1 \right|\]
\[\left| x \right| = - x \text { for } x < 0\]
\[\left| x \right| = x \text { for }x > 0\]
\[\left| x - 1 \right| = - \left( x - 1 \right) = - x + 1 \text { for } x - 1 < 0 \text { or }x < 1\]
\[\left| x - 1 \right| = x - 1 \text { for } x - 1 > 0 \text { or }x > 1\]
Now,
\[f\left( x \right) = - x - x + 1 = - 2x + 1 x \in \left( - 1, 0 \right)\]
or
\[f\left( x \right) = x - x + 1 = 1 x \in \left( 0, 1 \right)\]
or
\[f\left( x \right) = x + x - 1 = 2x - 1 x \in \left( 1, 2 \right)\]
Now,
\[\text { LHL } = \lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^-} - 2x + 1 = 0 + 1 = 1\]
\[\text { RHL } = \lim_{x \to 0^+} f\left( x \right) = \lim_{x \to 0^+} 1 = 1\]
\[\text { Hence, at x = 0, LHL = RHL}\]
Again,
\[\text { LHL } = \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^-} 1 = 1\]
\[\text { RHL} = \lim_{x \to 1^+} f\left( x \right) = \lim_{x \to 1^+} 2x - 1 = 2 - 1 = 1\]
\[\text { Hence, at x = 1, LHL = RHL}\]
Now,
\[f\left( x \right) = - x - x + 1 = - 2x + 1 x \in \left( - 1, 0 \right)\]
\[ \Rightarrow f'\left( x \right) = - 2 x \in \left( - 1, 0 \right)\]
\[or\]
\[f\left( x \right) = x - x + 1 = 1 x \in \left( 0, 1 \right)\]
\[ \Rightarrow f'\left( x \right) = 0 x \in \left( 0, 1 \right)\]
\[or\]
\[f\left( x \right) = x + x - 1 = 2x - 1 x \in \left( 1, 2 \right)\]
\[ \Rightarrow f'\left( x \right) = 2 x \in \left( 1, 2 \right)\]
Now,
\[\text { LHL }= \lim_{x \to 0^-} f'\left( x \right) = \lim_{x \to 0^-} - 2 = - 2\]
\[\text { RHL }= \lim_{x \to 0^+} f'\left( x \right) = \lim_{x \to 0^+} 0 = 0\]
\[\text { Since, at x = 0, LHL } \neq \text { RHL}\]
\[\text { Hence,} f\left( x \right) \text { is not differentiable at } x = 0\]
Again,
\[\text { LHL }= \lim_{x \to 1^-} f'\left( x \right) = \lim_{x \to 1^-} 0 = 0\]
\[\text { RHL } = \lim_{x \to 1^+} f'\left( x \right) = \lim_{x \to 1^+} 2 = 2\]
\[\text { Since, at } x = 1, \text { LHL } \neq \text { RHL }\]
\[\text { Hence }, f\left( x \right) \text { is not differentiable at } x = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tan(x + y), find `("d"y)/("d"x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
|sinx| is a differentiable function for every value of x.
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`sin sqrt(x) + cos^2 sqrt(x)`
sinx2 + sin2x + sin2(x2)
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
If sin y = x sin (a + y), then value of dy/dx is
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
The function f(x) = x | x |, x ∈ R is differentiable ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.