मराठी

If y1-x2+x1-y2 = 1, then prove that dydx=-1-y21-x2 - Mathematics

Advertisements
Advertisements

प्रश्न

If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`

बेरीज

उत्तर

`ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1

Let sin–1x = A and sin–1y = B.

Then x = sinA and y = sinB

`ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1

⇒ sinBcosA + sinAcosB = 1

⇒ sin(A + B) = 1

⇒ A + B = sin–11 = `pi/2`

⇒ sin–1x + sin–1y = `pi/2`

Differentiating w.r.to x, we obtain `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Sample

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0


Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`


Let f(x)= |cosx|. Then, ______.


Differential coefficient of sec (tan–1x) w.r.t. x is ______.


|sinx| is a differentiable function for every value of x.


cos |x| is differentiable everywhere.


sinn (ax2 + bx + c)


`sin^-1  1/sqrt(x + 1)`


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


A function is said to be continuous for x ∈ R, if ____________.


`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to


If sin y = x sin (a + y), then value of dy/dx is


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.


If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.


If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.


If f(x) = | cos x |, then `f((3π)/4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×