Advertisements
Advertisements
प्रश्न
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
उत्तर
`ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1
Let sin–1x = A and sin–1y = B.
Then x = sinA and y = sinB
`ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1
⇒ sinBcosA + sinAcosB = 1
⇒ sin(A + B) = 1
⇒ A + B = sin–11 = `pi/2`
⇒ sin–1x + sin–1y = `pi/2`
Differentiating w.r.to x, we obtain `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Let f(x)= |cosx|. Then, ______.
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
|sinx| is a differentiable function for every value of x.
cos |x| is differentiable everywhere.
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
A function is said to be continuous for x ∈ R, if ____________.
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
If sin y = x sin (a + y), then value of dy/dx is
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
If f(x) = | cos x |, then `f((3π)/4)` is ______.