Advertisements
Advertisements
प्रश्न
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
उत्तर
Let u = `tan^-1 (sqrt(1 - x^2)/x)` and v = `cos^-1(2xsqrt(1 - x^2))`.
We want to find `"du"/"dv" = (("du")/("dx"))/(("dv")/("dx"))`
Now u = `tan^-1 (sqrt(1 - x^2)/x)`.
Put x = `sintheta. (pi/2 < theta < pi/2)`
Then u = `tan^-1 (sqrt(1 - sin^2theta)/sintheta)`
= `tan^-1 (cot theta)`
= `tan^-1 {tan (pi/2 - theta)}`
= `pi/2 - theta`
= `pi/2 - sin^-1x`
Hence `"du"/"dx" = (-1)/sqrt(1 - x^2)`.
Now v = `cos^-1 (2x sqrt(1 - x^2))`
= `pi/2 - sin^-1 (2x sqrt(1 - x^2))`
= `pi/2 - sin^-1 (2sintheta sqrt(1 - sin^2theta))`
= `pi/2 - sin^-1 (sin 2theta)`
= `pi/2 - sin^-1 {sin (pi - 2theta)}` .......{Since `pi/2` < 2θ < π]
= `pi/2 - (pi / 2theta)`
= `(-pi)/2 + 2theta`
⇒ v = `(-pi)/2 + 2sin^-1x`
⇒ `"dv"/"dv" = (("du")/("d"x))/(("dv")/("dx"))`
= `((-1)/sqrt(1 - x^2))/(2/sqrt(1 - x^2))`
= `(-1)/2`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate the function with respect to x.
`cos (sqrtx)`
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
Discuss the continuity and differentiability of the
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Let f(x)= |cosx|. Then, ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
|sinx| is a differentiable function for every value of x.
`sin sqrt(x) + cos^2 sqrt(x)`
sinx2 + sin2x + sin2(x2)
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
If sin y = x sin (a + y), then value of dy/dx is
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = | cos x |, then `f((3π)/4)` is ______.