मराठी

Differentiate tan-1(1-x2x) with respect tocos-1(2x1-x2), where x∈(12,1) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`

बेरीज

उत्तर

Let u = `tan^-1 (sqrt(1 - x^2)/x)` and v = `cos^-1(2xsqrt(1 - x^2))`.

We want to find `"du"/"dv" = (("du")/("dx"))/(("dv")/("dx"))`

Now u = `tan^-1 (sqrt(1 - x^2)/x)`.

Put x = `sintheta. (pi/2 < theta < pi/2)`

Then u = `tan^-1 (sqrt(1 - sin^2theta)/sintheta)`

= `tan^-1 (cot theta)`

= `tan^-1 {tan (pi/2 - theta)}`

= `pi/2 - theta`

= `pi/2 - sin^-1x`

Hence `"du"/"dx" = (-1)/sqrt(1 - x^2)`.

Now v = `cos^-1 (2x sqrt(1 - x^2))`

= `pi/2 - sin^-1 (2x sqrt(1 - x^2))`

= `pi/2 - sin^-1 (2sintheta sqrt(1 - sin^2theta))`

= `pi/2 - sin^-1 (sin 2theta)`

= `pi/2 - sin^-1 {sin (pi - 2theta)}`  .......{Since  `pi/2` < 2θ < π]

= `pi/2 - (pi / 2theta)`

= `(-pi)/2 + 2theta`

⇒ v = `(-pi)/2 + 2sin^-1x`

⇒ `"dv"/"dv" = (("du")/("d"x))/(("dv")/("dx"))`

= `((-1)/sqrt(1 - x^2))/(2/sqrt(1 - x^2))`

= `(-1)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Solved Examples [पृष्ठ १०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Solved Examples | Q 23 | पृष्ठ १०२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

`sec(tan (sqrtx))`


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate the function with respect to x.

`cos (sqrtx)`


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

sin3 x + cos6 x


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Let f(x)= |cosx|. Then, ______.


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


|sinx| is a differentiable function for every value of x.


`sin sqrt(x) + cos^2 sqrt(x)`


sinx2 + sin2x + sin2(x2)


(sin x)cosx 


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to


If sin y = x sin (a + y), then value of dy/dx is


If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`


If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.


If f(x) = | cos x |, then `f((3π)/4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×