मराठी

Find dydx,ify=12(1–cost),x=10(t–sint),-π2<t<π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 

बेरीज

उत्तर

y = 12 (1 – cost ), x = 10 (t – sint)

On differentiating with respect to t,

`dy/dx = 12(0 + sin t) = 12 sin t, dx/dt = 10(1 - cos t)`

`therefore dy/dx = (dy//dt)/(dx//dt)`

`= (12 sin t)/(10 (1 - cos t))`

`= (6 sin t) / (5 (1 - cos t))`

`= 6/5 [(2 sin t // 2 cos t // 2)/(2 sin^2 t //2)]`

`= 6/5  cot  t /2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.9 [पृष्ठ १९१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.9 | Q 12 | पृष्ठ १९१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

sin3 x + cos6 x


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Differentiate w.r.t. x the function:

`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


If f (x) = |x|3, show that f ″(x) exists for all real x and find it.


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


If f(x) = x + 1, find `d/dx (fof) (x)`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


`sin sqrt(x) + cos^2 sqrt(x)`


`cos(tan sqrt(x + 1))`


sinx2 + sin2x + sin2(x2)


(sin x)cosx 


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`


Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.


Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.


If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.


The function f(x) = x | x |, x ∈ R is differentiable ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×