Advertisements
Advertisements
प्रश्न
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
उत्तर
y = `(sec^-1 "x")^2 ,"x" > 0`
⇒ `(d"y")/(d"x") = 2 sec^-1 "x"· (d(sec^-1"x"))/(d"x")`
⇒ `(d"y")/(d"x") = 2 sec^-1 "x"·(1)/(xsqrt(x^2 - 1))` ......(i)
⇒ `(d^2y)/(dx^2) = 2[1/(x^2(x^2 - 1))] + 2sec^-1x[[-sqrt(x^2 - 1) - x((2x)/(2sqrt(x^2 - 1))))/(x^2(x^2 - 1))]`
⇒ `(d^2"y")/(d"x"^2) = 2 [(1)/("x"^2("x"^2 -1)]] + 2 sec^-1 "x"· (1)/(xsqrt("x"^2 - 1)) [ ("x"(1 - 2"x"^2))/("x"^2 ("x"^2 - 1))] ` .......(ii)
From (i) and (ii), we get
`(d^2"y")/(d"x"^2) = 2 [(1)/("x"^2("x"^2 -1)]] + (d"y")/(d"x") [ ("x"(1 - 2"x"^2))/("x"^2 ("x"^2 - 1))] `
⇒ `"x"^2 ("x"^2 -1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x")· (d"y")/(d"x") - 2 = 0`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`cos (sqrtx)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
If f(x) = x + 1, find `d/dx (fof) (x)`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tan(x + y), find `("d"y)/("d"x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
|sinx| is a differentiable function for every value of x.
`sin sqrt(x) + cos^2 sqrt(x)`
(sin x)cosx
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.