Advertisements
Advertisements
प्रश्न
Differentiate w.r.t. x the function:
`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`
उत्तर
Let, `y = sin^-1 (x sqrtx)`
On differentiating with respect to x,
`dy/dx = 1/ sqrt (1 - x^3). d/dx x sqrtx`
`= 1/ sqrt(1 - x^3). [x . 1/(2 sqrtx) + sqrtx]`
`= 1/ sqrt(1 - x^3) [sqrtx/2 + sqrtx]`
`= 1/sqrt (1 - x^3) [(sqrtx + 2sqrtx)/2]`
`= 3/2 * sqrt(x/(1 - x^3))`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
sin (ax + b)
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
If f(x) = x + 1, find `d/dx (fof) (x)`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tan(x + y), find `("d"y)/("d"x)`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Let f(x)= |cosx|. Then, ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
The function f(x) = x | x |, x ∈ R is differentiable ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.