Advertisements
Advertisements
प्रश्न
sinmx . cosnx
उत्तर
Let y = sinmx . cosnx
∴ `"dy"/"dx" = "d"/"dx" [(sin x)^"m" * (cos x)^"n"]`
= `(sin x)^"m" "d"/"dx" (cos x)^"n" + (cos x)^"n" "d"/"dx" (sin x)^"m"`
= `(sin x)^"m" "n"(cos x)^("n" - 1) "d"/"dx" (cos x) + (cos x)^"n" "m"(sin x)^("m" - 1) "d"/"dx" (sin x)`
= `(sin x)^"m" "n"(cos x)^("n" - 1) (- sin x) + (cos x)^"n" "m"(sin x)^("m" - 1) cos x`
= sinm x cosn x[–n tan x + m cot x]
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate the function with respect to x.
`cos (sqrtx)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
If f(x) = x + 1, find `d/dx (fof) (x)`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
|sinx| is a differentiable function for every value of x.
cos |x| is differentiable everywhere.
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
The function f(x) = x | x |, x ∈ R is differentiable ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.