Advertisements
Advertisements
प्रश्न
`sin^-1 1/sqrt(x + 1)`
उत्तर
Let y = `sin^-1 1/sqrt(x + 1)`
∴ `"dy"/"dx" = "d"/"dx" (sin^-1 1/sqrt(x + 1))`
= `1/sqrt(1 - (1/sqrt(x + 1))^2) * "d"/"dx" 1/(x + 1)^2`
= `1/sqrt((x + 1 - 1)/(x + 1)) * "d"/"dx" (x + 1)^2`
= `sqrt((x + 1)/x) * (-1)/2(x + 1)^((-3)/2)`
= `(-1)/(2sqrt(x)) * (1/(x + 1))`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate the function with respect to x.
`cos (sqrtx)`
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tan(x + y), find `("d"y)/("d"x)`
Let f(x)= |cosx|. Then, ______.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
sinn (ax2 + bx + c)
sinx2 + sin2x + sin2(x2)
sinmx . cosnx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
A function is said to be continuous for x ∈ R, if ____________.
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.