Advertisements
Advertisements
प्रश्न
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
उत्तर
Given that f(x) = |sin x + cos x| at x = π
Put g(x) = sin x + cos x and h(x) = |x|
∴ h[g(x)] = h(sin x + cos x) = |sin x + cos x|
Now, g(x) = sin x + cos x is a continuous function since sin x and cos x are two continuous functions at x = π.
We know that every modulus function is a continuous function everywhere.
Hence, f(x) = |sin x + cos x| is continuous function at x = π.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
`cos (sqrtx)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tan(x + y), find `("d"y)/("d"x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Let f(x)= |cosx|. Then, ______.
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
sinmx . cosnx
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`