Advertisements
Advertisements
प्रश्न
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
उत्तर
We have y = tanx + secx.
Differentiating w.r.t. x, we get
`("d"y)/("d"x)` = sec2x + secx tanx
= `1/(cos2x) + sinx/(cos^2x)`
= (1 + sinx)/(cos^2x)`
= `(1 + sinx)/((1 + sinx)(1 - sinx))`
Thus `("d"y)/("d"x) = 1/(1 - sin )`.
Now, differentiating again w.r.t. x, we get
`("d"^2y)/("d"x^2) = (-(cos x))/(1 - sin x)^2`
= `cosx/(1 - sin x)^2`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`cos (sqrtx)`
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
Discuss the continuity and differentiability of the
If y = tan(x + y), find `("d"y)/("d"x)`
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
The function f(x) = x | x |, x ∈ R is differentiable ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.