Advertisements
Advertisements
प्रश्न
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
उत्तर
Let, y = `x^(x^2-3) + (x - 3) x^2`
= u + v (approximately)
Now, u = `x^(x^2-3)`
Taking logarithm on both sides,
`1/u (du)/dx = (x^2 - 3)/x + log x (2x)`
`(du)/dx = x^(x^2 - 3) [(x^2 - 3)/x + 2 x log x]`
Also, `v = (x - 3)^(x^2)`
Taking logarithm on both sides,
v = `(x - 3) x^2`
On differentiating with respect to x,
`1/v (dv)/dx = x^2/(x-3) + log (x - 3) (2x)`
`(dv)/dx = (x - 3)^(x^2) [x^2/(x-3) + 2x log (x - 3)]`
As `dy/dx = (du)/dx + (dv)/dx`
`= x^(x^2-3) [(x^2 - 3)/x + 2x log x] + (x-3)^(x^2) [x^2/(x-3) + 2x log (x-3)]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate the function with respect to x.
`cos (sqrtx)`
Prove that the function f given by `f(x) = |x - 1|, x in R` is not differentiable at x = 1.
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?
Discuss the continuity and differentiability of the
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If f(x) = x + 1, find `d/dx (fof) (x)`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
Let f(x)= |cosx|. Then, ______.
|sinx| is a differentiable function for every value of x.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`sin sqrt(x) + cos^2 sqrt(x)`
sinn (ax2 + bx + c)
sinmx . cosnx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
The function f(x) = x | x |, x ∈ R is differentiable ______.