Advertisements
Advertisements
प्रश्न
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
उत्तर
Let y = `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
Putting x2 = cos 2θ
∴ θ = `1/2 cos^-1 x^2`
y = `tan^-1 ((sqrt(1 + cos 2theta) + sqrt(1 - cos 2theta))/(sqrt(1 + cos 2theta) - sqrt(1 - cos 2theta)))`
⇒ y = `tan^-1 ((sqrt(2cos^2theta) + sqrt(2sin^2theta))/(sqrt(2cos^2theta) - sqrt(2sin^2theta)))`
⇒ y = `tan ((sqrt(2) cos theta + sqrt(2) sin theta)/(sqrt(2) cos theta - sqrt(2) sin theta))`
⇒ y = `tan^-1 ((cos theta + sin theta)/(cos theta - sin theta))`
⇒ y = `tan^-1 [((costheta)/(costheta) + (sintheta)/(costheta))/((costheta)/(costheta) - (sintheta)/(costheta))]`
⇒ y = `tan^-1 [(1 + tan theta)/(1 - tan theta)]`
⇒ y = `tan^-1 [(tan pi/4 + tan theta)/(1 - tan pi/4 * tan theta)]`
⇒ y = `tan^-1 [tan (pi/4 + theta)]`
⇒ y = `pi/4 + theta`
⇒ y = `pi/4 + 1/2 cos^-1 x^2`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" (pi/4) + 1/2 "d"/"dx" (cos^-1 x^2)`
= `0 + 1/2 xx (-1)/sqrt(1 - x^4) * "d"/"dx" (x^2)`
= `(-1.2x)/(2sqrt(1 - x^4)`
= `- x/sqrt(1 - 4x^4)`
Hence, `"dy"/"dx" = - x/sqrt(1 - x^4)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2`
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
`cos(tan sqrt(x + 1))`
sinx2 + sin2x + sin2(x2)
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
If `ysqrt(1 - x^2) + xsqrt(1 - y^2)` = 1, then prove that `(dy)/(dx) = - sqrt((1 - y^2)/(1 - x^2))`
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.